Estimation of the Bivariate Kumaraswamy Lifetime Distribution under Progressive Type-I Censoring

نویسندگان

چکیده

Analyzing time to event data arises in a number of fields such as Biology and Engineering. A common feature this is that, the exact failure for all units may not be observable. Accordingly, several types censoring were presented. Progressive allows randomly removed before terminal point experiment. Marshall-Olkin bivariate lifetime distribution was first introduced 1967 using exponential distribution. Recently, Kumaraswamy derived. This paper derives likelihood function under progressive type-I family general applies it on Maximum estimators model parameters Simulation study real set are presented illustrate proposed procedure. Absolute bias, mean square error, asymptotic confidence intervals, width coverage probability obtained. results indicate that error smaller narrower more precise when removals gets smaller. Also, increasing experiment reducing width.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

Exact hypothesis testing and confidence interval for mean of the exponential distribution under Type-I progressive hybrid censoring

 ‎Censored samples are discussed in experiments of life-testing; i.e‎. ‎whenever the experimenter does not observe the failure times of all units placed on a life test‎. ‎In recent years‎, ‎inference based on censored sampling is considered‎, ‎so that about the parameters of various distributions such as ‎normal‎, ‎exponential‎, ‎gamma‎, ‎Rayleigh‎, ‎Weibull‎, ‎log normal‎, ‎inverse Gaussian‎, ...

متن کامل

Nonparametric copula estimation under bivariate censoring

In this paper, we consider nonparametric copula inference under bivariate censoring. Based on an estimator of the joint cumulative distribution function, we define a discrete and two smooth estimators of the copula. The construction that we propose is valid for a large number of estimators of the distribution function, and therefore for a large number of bivariate censoring frameworks. Under so...

متن کامل

Estimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring

This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...

متن کامل

Nonparametric quantile estimation under progressive censoring

This work deals with asymptotic properties of the [αm]-th order statistic of a type-II progressively censored sample of size m. Such an order statistic, indexed by α ∈ [0, 1], is called the quantile process. Our main results concern the normalized version of the quantile process for which invariance principles are obtained. These results are applied in order to construct non-parametric estimato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of data science

سال: 2021

ISSN: ['1680-743X', '1683-8602']

DOI: https://doi.org/10.6339/jds.202010_18(4).0009